Search results for "spectral imaging"
showing 10 items of 311 documents
Comparison of Crop Trait Retrieval Strategies Using UAV-Based VNIR Hyperspectral Imaging.
2021
Hyperspectral cameras onboard unmanned aerial vehicles (UAVs) have recently emerged for monitoring crop traits at the sub-field scale. Different physical, statistical, and hybrid methods for crop trait retrieval have been developed. However, spectra collected from UAVs can be confounded by various issues, including illumination variation throughout the crop growing season, the effect of which on the retrieval performance is not well understood at present. In this study, four retrieval methods are compared, in terms of retrieving the leaf area index (LAI), fractional vegetation cover (fCover), and canopy chlorophyll content (CCC) of potato plants over an agricultural field for six dates duri…
Compressive single-pixel multispectral Stokes polarimeter
2014
We present a single-pixel system that performs polarimetric multispectral imaging with the aid of compressive sensing techniques. We experimentally obtain the full Stokes spatial distribution of a scene for different spectral channels.
Brown and green LAI mapping through spectral indices
2015
Abstract When crops senescence, leaves remain until they fall off or are harvested. Hence, leaf area index (LAI) stays high even when chlorophyll content degrades to zero. Current LAI approaches from remote sensing techniques are not optimized for estimating LAI of senescent vegetation. In this paper a two-step approach has been proposed to realize simultaneous LAI mapping over green and senescent croplands. The first step separates green from brown LAI by means of a newly proposed index, ‘Green Brown Vegetation Index (GBVI)’. This index exploits two shortwave infrared (SWIR) spectral bands centred at 2100 and 2000 nm, which fall right in the dry matter absorption regions, thereby providing…
Hyperspectral venous image quality assessment for optimum illumination range selection based on skin tone characteristics
2014
Background Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient’s veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc. Methods To enhance the visibility of veins, near infrared imaging systems is used to assist medical staff in veins localization process. Optimum illumination is crucial to obt…
Semi-Supervised Classification Method for Hyperspectral Remote Sensing Images
2004
A new approach to the classification of hyperspectral images is proposed. The main problem with supervised methods is that the learning process heavily depends on the quality of the training data set. In remote sensing, the training set is useful only for simultaneous images or for images with the same classes taken under the same conditions; and, even worse, the training set is frequently not available. On the other hand, unsupervised methods are not sensitive to the number of labelled samples since they work on the whole image. Nevertheless, relationship between clusters and classes is not ensured. In this context, we propose a combined strategy of supervised and unsupervised learning met…
Water detection in skin by dual-band photodiodes
2013
Purpose of this study was to develop a simple model for possibilities to detect water in skin by diffuse reflectance spectra. The model is based on comparison of diffuse reflectance spectra when illuminating water sample with LEDs of different wavelengths (1200 nm, and 1450 nm). The illumination LEDs were chosen due to water absorption differences in near-infrared spectral range. For detection, dual-band photodiode DSD2 by Thorlabs was used. Due to differences of water absorption at different wavelengths in the near-infrared spectral region, this correlation could be used for mapping of water content in skin or, in other words, determine relative moisture level in skin. Simple experimental …
Updating strategies for distance based classification model with recursive least squares
2022
Abstract. The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the possibilities of introducing new classes with Recursive Least Squares (RLS) updates for the pre-trained self learning-MLM model. The idea of experiment B is to simulate the push broom spectral imagers working principles, update and test the model based on a stream of pixel spectrum lines on a continuous scanning process. Experiment B aims to train the model with a significantly small amount of labelled reference points and update it continuously with (RLS) to reach ma…
Quantification of melanin and hemoglobin in humain skin from multispectral image acquisition: use of a neuronal network combined to a non-negative ma…
2012
International audience; This article presents a multispectral imaging system which, coupled with a neural network-based algorithm, reconstructs reflectance cubes. The reflectance spectra are obtained using artificial neural-netwok reconstruction which generates reflectance cubes from acquired multispectral images. Then, a blind source separation algorithm based on Non-negative Matrix Factorization is used for the decomposition of human skin absorption spectra in its main pigments: melanin and hemoglobin. The analysis is performed on reflectance spectra. The implemented source separation algorithm is based on a multiplicative coefficient upload. The goal is to represent a given spectrum as t…
Retrieval of chlorophyll content and LAI of crops using hyperspectral techniques: application to PROBA/CHRIS data
2008
Hyperspectral/multiangular data allow the retrieval of important vegetation properties at canopy level, such as the Leaf Area Index (LAI) and Leaf Chlorophyll Content. Current methods are based on the relationship between biophysical properties and retrievals from those spectral bands (from the complete hyperspectral/multiangular information) where specific absorption features are present within the considered spectral range. Furthermore, new sensors such as PROBA/CHRIS provide continuous hyperspectral reflectance measurements that can be considered as a continuous function of wavelength. The mathematical analysis of these continuous functions allows a new way of exploiting the relationship…
Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy
2018
Transparent upconverting hybrid nanocomposites are exciting materials for advanced applications such as 3D displays, nanosensors, solar energy converters, and fluorescence biomarkers. This work presents a simple strategy to disperse upconverting b-NaYF4:Yb3+/Er3+ or Tm3+ nanoparticles into low cost, widely used and easy-to-process polydimethylsiloxane (PDMS)-based organic–inorganic hybrids. The upconverting hybrids were shaped as monoliths, films or powders displaying in the whole volume Tm3+ or Er3+ emissions (in the violet/blue and green/red spectral regions, respectively). For the first time, hyperspectral microscopy allows the identification at the submicron scale of differences in the …